skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sung, Li-yeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop a convergence analysis for the simplest finite element method for a model linear-quadratic elliptic distributed optimal control problem with pointwise control and state constraints under minimal assumptions on the constraint functions.We then derive the generalized Karush–Kuhn–Tucker conditions for the solution of the optimal control problem from the convergence results of the finite element method and the Karush–Kuhn–Tucker conditions for the solutions of the discrete problems. 
    more » « less
    Free, publicly-accessible full text available February 16, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. We construct a nonlinear least-squares finite element method for computing the smooth convex solutions of the Dirichlet boundary value problem of the Monge-Ampère equation on strictly convex smooth domains in R 2 {\mathbb {R}}^2 . It is based on an isoparametric C 0 C^0 finite element space with exotic degrees of freedom that can enforce the convexity of the approximate solutions.A priorianda posteriorierror estimates together with corroborating numerical results are presented. 
    more » « less
  5. A nonlinear least-squares finite element method for strong solutions of the Dirichlet boundary value problem of a two-dimensional Pucci equation on convex polygonal domains is investigated in this paper. We obtain a priori and a posteriori error estimates and present corroborating numerical results, where the discrete nonsmooth and nonlinear optimization problems are solved by an active set method and an alternating direction method with multipliers. 
    more » « less
  6. We consider C0 interior penalty methods for a linear-quadratic elliptic distributed optimal control problem with pointwise state constraints in two spatial dimensions, where the cost function tracks the state at points, curves and regions of the domain. Error estimates and numerical results that illustrate the performance of the methods are presented. 
    more » « less
  7. We present an adaptive nonlinear least-squares finite element method for a two dimensional Pucci equation. The efficiency of the method is demonstrated by a numerical experiment. 
    more » « less